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Abstract1

Infrared imaging spectrometers are used to map and characterize wildland fire based on2
their sensitivity to fire-emitted thermal radiation and ability to resolve spectral emission3
or absorption features. There is a general paucity of research on the use of space-borne4
imaging spectroscopy to study active fires in the North American boreal forest. We5
used hyperspectral data acquired by the Hyperion sensor on the EO-1 satellite over three6
wildfires in Alaska’s boreal forest to evaluate three fire detection methods: A metric to7
detect an emission feature from potassium emitted by biomass burning; a continuum-8
interpolated band ratio (CIBR) that measures the depth of a carbon dioxide absorption9
line at 2010 nm; and the Hyperspectral Fire Detection Index (HFDI), which is a normalized10
difference index based on spectral radiance in the short-wave infrared range. We found11
that a modified version of the HFDI produces a well-defined map of the active fire12
areas. The CO2 CIBR, though affected by sensor noise and smoke, contributes a slight13
improvement to the fire detection performance when combined with HFDI-type indices.14
In contrast, detecting a fire signal from potassium emission was not reliably possible in15
a practically useful way. We furthermore retrieved fire temperatures by modeling the16
at-sensor radiance as a linear mixture of two emitted and two reflected spectral radiance17
endmembers. High-temperature fire areas (the high-intensity fire front, modeled at 800-18
900 K) and low-temperature combustion (residual fire at 500-600 K), were mapped. High-19
temperature burning areas as small as half a percent of a Hyperion pixel (approx. 5 m2)20
were detectable. These techniques are of potential interest for fire characterization in the21
boreal areas of the circumpolar North using current and future satellite-borne imaging22
spectrometers.23
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1. Introduction24

Satellite-based infrared remote sensing has been in use since the 1980s as a cost-effective25

way to detect and investigate wildfires (e.g. Flannigan and Haar, 1986; Robinson, 1991;26

Prakash et al., 2011; Ichoku et al., 2012). Multispectral sensors, which typically offer a27

small number of carefully placed spectral bands, are widely used. For the detection of28

radiation emitted by active fire, the mid- and thermal infrared (MIR and TIR) regions29

of the electromagnetic spectrum are of particular interest (Kaufman et al., 1998; Briess30

et al., 2003; Giglio et al., 2003, 2016; Schroeder et al., 2014) as the fire-emitted radiance31

in the MIR range (approximately 4 μm) far exceeds background levels even if fire only32

occupies a small portion of a pixel. Other techniques employ shortwave infrared (SWIR)33

data from sensors with a spatial resolution of approximately 30 m and suitable sensitivity34

and saturation behavior (Giglio et al., 2008; Schroeder et al., 2015).35

In contrast, in imaging spectroscopy (also called hyperspectral remote sensing), data is36

acquired in a large number of contiguous spectral bands that typically span the visible37

and near-infrared (VNIR) as well as the shortwave infrared regions of the electromagnetic38

spectrum. Given that an imaging spectrometer produces a radiance or reflectance39

spectrum at every pixel of the image, a frequently used approach consists in unmixing40

these spectra using spectral libraries of relevant land cover classes (Roberts et al., 1998).41

Imaging spectroscopy has been applied to wildfire analysis with respect to pre- and post-42

fire research topics such as vegetation classification (Goodenough et al., 2003; Dennison43

et al., 2006; Dalponte et al., 2013), fire danger (Roberts et al., 2003), forest canopy fuel44

characteristics (Jia et al., 2006) and fire severity (Lewis et al., 2011). Nearly all of45

these works use airborne hyperspectral imagery. Studies of high-temperature events46

that are relevant to satellite-based hyperspectral remote sensing include applications47

to volcanology (Wright et al., 2010; Abrams et al., 2013), fire detection (Dennison,48
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2006; Dennison and Roberts, 2009; Amici et al., 2011) and fire characterization via fire49

temperature and fractional pixel area retrieval (Dennison et al., 2006; Dennison and50

Matheson, 2011). These studies rely on the spectral emission and absorption features,51

sensitivity, and large number of data points produced by the hyperspectral instrument52

instead of MIR or TIR bands, which are generally not available.53

Active fire in the boreal forest is currently not well-studied using imaging spectroscopy54

despite the fact that wildland fire is an important factor in the boreal forest eco-region55

(Chapin et al., 2000). For Alaska, where a majority of the boreal areas of the United States56

of America is located, wildfires consume an average of 7500 km2 annually (Kasischke et al.,57

2010). The average annual burned area has been estimated to increase by 2.4 %/yr (Calef58

et al., 2015, for 1943-2012) to 3.1 %/yr (Giglio et al., 2013, for all of boreal North America,59

1995-2011).60

The Hyperion sensor on the National Aeronautic and Space Administration’s (NASA’s)61

EO-1 (Earth Observation 1) satellite platform (Pearlman et al., 2003; Ungar et al., 2003;62

Middleton et al., 2013) offers an opportunity to fill this gap and develop methodologies63

that will be more useful as future imaging spectrometers become available. Currently,64

planned missions are NASA’s Hyperspectral Infrared Imager (HyspIRI) (Middleton et al.,65

2010; Abrams et al., 2013; Lee et al., 2015), the German Environmental Mapping and66

Analysis (EnMAP) instrument (Kaufmann et al., 2006), the Italian Space Agency’s (ASI’s)67

PRecursore IperSpettrale della Missione Applicativa (PRISMA) satellite (Labate et al.,68

2009), and the Spaceborne Hyperspectral Applicative Land and OceanMission (SHALOM)69

(Ben Dor et al., 2014; Feingersh and Ben Dor, 2015), a collaboration of the space agencies70

of Israel and Italy. All of these missions will offer a spatial resolution comparable to71

Hyperion, a similar range of spectral channels, and reduced noise. The main objectives72

of both PRISMA and SHALOM include gathering information about land cover, pollution73
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and the carbon cycle. EnMAP is equipped with pointing capability of ± 30° to achieve a74

target revisit frequency of 3-4 days and aims tomeasure parameters related to biochemical75

processes (Kaufmann et al., 2006). Wildfire is a factor in all these topics. HyspIRI will also76

include a multispectral TIR instrument to enhance the instrument’s ability to investigate77

high-temperature targets (Roberts et al., 2012; Realmuto et al., 2015). Its revisit frequency78

is 16 days for VNIR/SWIR and 5 days for TIR globally, but less at high latitudes. HyspIRI79

was designed to address science questions about wildfire in relation to vegetation cover80

as well as global biomass burning (Realmuto et al., 2015).81

The operational community does not currently use hyperspectral data for fire detection.82

While TIR sensors are traditionally the instrument of choice for fire detection especially83

on a global scale, we find that the detection of low-intensity active fire is often not84

satisfactory in existing fire products (Waigl et al., 2017). The new hyperspectral sensors85

in development will be capable of covering larger regions of the earth with exceptional86

spatial, spectral, and temporal resolutions. They will provide greatly enhanced signal-87

to-noise ratio and target revisit capabilities. The main objective of this study is to88

evaluate existing fire detection methods and the capabilities imaging spectroscopy. Our89

research aims to identify spectral bands that can be proposed for future hyperspectral and90

multispectral instruments.91

We explore the application of satellite-based imaging spectroscopy to the study of the92

properties of active fires in Alaska’s boreal forest. In the following sections, we introduce93

our three study areas, which are located in interior Alaska, and provide an overview94

of the available Hyperion data. We then describe three known fire detection methods95

that have the potential to be applicable to our study scenes: the Hyperspectral Fire96

Detection Index (HFDI), the detection of a potassium (K) emission feature, and the carbon97

dioxide continuum-interpolated band ratio (CIBR), which relies on the measurement of98
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an absorption feature to differentiate between emitted and reflected radiation. We also99

describe how sub-pixel active fire temperatures and fractional areas are retrieved using a100

linear combination of simulated atmospherically corrected emission spectra and reflected101

background spectra. The description of methods is followed by a summary of results102

and their discussion. We conclude by evaluating our findings with a view on how these103

methods could be applicable to future satellite-borne hyperspectral sensors and which104

design featuresmight be particularly beneficial for active boreal forest fire remote sensing.105

2. Study Areas106

We selected three study areas (Figure 1) based on the availability of EO-1 Hyperion data107

over large Alaskan wildfires. We searched the catalog of available scenes in the United108

States Geological Survey (USGS) data archive based on fire location and time data from109

the Alaska Large Fires Database (ALFD) (Kasischke et al., 2002) and subsequently selected110

all scenes that clearly showed several clusters of contiguous pixels with active combustion111

that were not obscured by smoke or clouds. The selected scenes represent the 2004112

Boundary fire, the 2004 Crazy fire, and the 2009 Wood River fire.113

With a burned area of 2150 km2, the 2004 Boundary fire north of Fairbanks, Alaska, was114

the largest wildfire of the most extreme Alaska fire season on record: During the summer115

of 2004, a total of 27 000 km2 burned in approximately 700 separate fire events (AICC,116

2004). The Boundary fire, discovered on June 13, 2004, was a highly destructive lightning-117

caused event which greatly impacted air quality (Grell et al., 2011) and aerial traffic across118

interior Alaska (Wendler et al., 2010), and was sufficiently severe to affect the post-fire119

succession of tree species in the boreal forest (Johnstone et al., 2010).120
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Figure 1: Map of study areas and corresponding final fire perimeters within interior Alaska. The
rectangular areas represent the three Hyperion study scenes. Fire perimeters are from the Alaska Large
Fires Database (ALFD), maintained by the Alaska Interagency Coordination Center, and typically
digitized from Landsat data (30 m resolution). Rivers and major roads are marked.

The 2004 Crazy fire was a smaller fire event (final burned area: 210 km2) whose active121

period overlapped with the Boundary fire. It started from a lightning-caused ignition on122

July 4, 2004, approximately 75 km north-east of the Boundary fire.123

The Wood River fire of 2009 also had air quality impact on Fairbanks. It burned in an124

area reserved for military use south of the town. Its final size is given as approximately125

500 km2 (AICC, 2009), but its burn perimeter includes considerable unburned areas. (The126

official designation of this fire event is ”Wood River 1”, but we omit the number for the127

sake of readability.)128

The land cover in all three study areas is dominated by highly flammable black spruce129
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forest. Stand density is much lower for the Wood River fire, which burned through a mix130

of forest and open brush land. The landscape is wetter and flatter than for the Boundary131

or the Crazy fire, located in hilly areas at higher elevations (500 to 1000 m above mean132

sea level). The Boundary fire also affected mixed conifer and hardwood stands.133

3. Data134

3.1. The Hyperion sensor on EO-1135

The Hyperion sensor is a pushbroom instrument with a 7.7 km wide imaging swath and136

a ground-sampling distance (GSD) of 30 m (Ungar et al., 2003). It is composed of two137

separate spectrometers: A VNIR instrument (400 - 1000 nm) and a SWIR instrument138

(1000 - 2500 nm), both with a spectral bandwidth of 10 nm (Figure 2) (Barry, 2001). In139

total, it has 242 spectral bands, with VNIR and SWIR channels overlapping around 1000140

nm. Due to the moderate signal-to-noise ratio (SNR), which deteriorates in the SWIR141

region compared to the VNIR, only 198 unique calibrated usable channels – 50 VNIR and142

148 SWIR – are processed in the Level 1B product (Pearlman et al., 2003). The longest-143

wavelength calibrated channel is band 224 (central wavelength 2395.5 nm). All throughout144

the extended mission phase, the Hyperion mission has continued to support calibration145

and validation activities such as improved lunar and terrestrial vicarious calibration146

technology and noise characterization (Kerola et al., 2009; Middleton et al., 2010).147

Originally conceived as a 1-year technology demonstration, the EO-1 mission went148

through several extensions (Middleton et al., 2013) after its initial operational phase149

(11/2000 – 2/2002) was completed. Orbital parameters were not preserved throughout150

the extensions. The data for the 2004 Boundary and Crazy fires were acquired during151

the initial extended phase that ended in late 2005, during which the EO-1 spacecraft was152
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maintained in a 705 km orbit. In 2006, EO-1 was lowered until it reached an orbital height153

of 690 km, at which point, in 2007, the mission was revived (Middleton et al., 2013). The154

2009 Wood River study scene was acquired during the phase that followed. 2016 was155

EO-1’s last operational year.156

Hyperion data is distributed as 12-bit unsigned integer raster data, which is radiometri-157

cally and terrain-corrected (Simon, 2006).158

Figure 2: Wavelength range of the VNIR and SWIR instruments of the Hyperion sensor. Some
blackbody spectra are superimposed for comparison.

3.2. Hyperion scenes159

For all three study scenes, the Hyperion scene reference, scene start time stamp, sensor160

look angle and latitude/longitude of the center of the used subset are summarized in161

Table 1. All overpasses took place within 20 min of 1 pm Alaska Daylight Time, on a162

descending node.163

The Hyperion scene available for the Boundary fire was acquired on July 19, 2004 and164

captures a small portion of the fire close to the western boundary of the final fire perimeter165

(Figure 1). Between the peak of the fire event on July 17 and the overpass of the EO-1166

satellite two days later, traces of precipitation halted its progress. The Hyperion imagery167

for the Crazy fire was acquired on July 10, 2004, when it was highly active.168
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The third study scene was acquired over the Wood River fire on August 2, 2009, during a169

high-intensity phase of the fire event. Unfortunately, the Hyperion swathmissed themost170

active portions of the fire front and only captured a number of relatively small fire pixel171

clusters, which are also spread over a larger area than in the 2004 Crazy and Boundary172

fire scenes. The 2009 data also appears to contain more noise and more pronounced173

pushbroom stripes than the earlier scenes. Therefore, we do not present any detailed174

maps of fire detection or temperature retrieval over this scene. However, the Wood River175

data was included in the evaluation of fire detection indices.176

Table 1: EO-1 Hyperion scenes and central latitude/longitude (WGS 84) of the subsets used

Fire name Fire start
date

Hyperion scene Scene start
time (UTC)

Sensor
look
angle

Latitude Longitude

Crazy 2004-07-04 EO1H0680132004192 2004-07-10
21:07:57

10.358° 65.74979° -145.0569°

Boundary 2004-06-13 EO1H0690142004201 2004-07-19
21:02:11

-2.4442° 65.28703° -147.7966°

Wood River 2009-07-12 EO1H0690142009214 2009-08-02
20:40:37

-16.446° 64.44595° -147.8978°

4. Methods177

Our Hyperion processing steps are summarized in Figure 3. After subsetting the swaths178

to the study areas, the digital numbers were converted to spectral radiance by dividing179

them by the scaling factors of 40 for the VNIR bands and 80 for the SWIR bands, specified180

in the scene metadata (Simon, 2006). The theoretical upper limits for measurable radiance181

are 819.2 W/(m2 µmsr) (VNIR) and 409.6 W/(m2 µmsr) (SWIR), respectively.182
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Figure 3: Hyperion processing flow

4.1. Fire-related feature extraction183

The evaluation and comparison of fire detection methods requires labeled fire and non-184

fire pixel data, which we generated by applying supervised classification to the study185

scenes. We used a false natural-color RGB image of each scene (bands 150-50-23, with186

central wavelengths of 1648.9 nm, 854.18 nm, and 579.45 nm) to manually sample 20187

pixels from each of the following four classes: fire, fresh fire scar, vegetation (forest or188

forest/shrubland), smoke/cloud. We carefully selected areas that were as pure as possible,189

avoiding mixed land cover classes and data anomalies such as saturation effects. By “fire”190

we mean pixels that contain actively burning areas. The Crazy fire imagery contained191

enough of both smoke and cloud that 20 pixels from each class were sampled, whereas192

the Wood River imagery is virtually smoke/cloud free, so the class was not sampled.193
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We further constrained the study areas more narrowly to the fire-adjacent region with the194

help of a mask: We first applied a spectral radiance threshold of 5 W/(m2 µmsr) in band195

220 (2355.21 nm) based on the observation that the spectral radiance of known non-fire196

pixels remains below this value. For the Crazy fire scene, we also excluded cloud pixels,197

which are highly reflective in the SWIR. Then we drew a convex shape around the set198

of all pixels exceeding the threshold, with an added 20 pixel wide buffer. The resulting199

mask ensures that only data located in the vicinity of active fire was processed. The200

pixels contained in these irregularly shaped subsets were classified with a Random Forest201

classifier (Breiman, 2001), a supervised classification method that has been successfully202

applied to Hyperion data (e.g. Ham et al., 2005). Themanually labeled sample pixels served203

as training data. To assess the stability of the classifier and confirm the adequacy of using204

20 training samples per class, we carried out a K-fold cross-validation (K = 10) (Friedman205

et al., 2001).206

The pixels in the “fire” class served as a data source for labeled fire pixels to evaluate fire207

detection methods, while the “vegetation” and “fire scar” classes represented the non-fire208

background. The “fire” class also was used as the input for fire temperature retrieval.209

4.2. Fire detection210

Fire detection in imaging spectroscopy data can use a number of different approaches.211

One is to rely on the same methods as fire detection in multi-spectral imagery: to identify212

thermal anomalies based on the electromagnetic radiation emitted by a burning source. If213

we represent the fire as a blackbody held at a constant temperature, the emitted spectral214

radiance is given by Planck’s law:215
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Lλ =
2hc2

λ5

(
e

hc
λkT − 1

) (1)

with T the absolute temperature, λ the wavelength, h = 6.626 070 04× 10−34 m2kg/s216

Planck’s constant, k = 1.380 648 52× 10−23 m2kg/(s2K) Boltzmann’s constant and c =217

2.997 924 58× 108 m/s the speed of light. With increasing temperature, the maximum218

of the emission curve moves towards shorter wavelengths, in a relation that is inversely219

proportional to the temperature (Wien’s law):220

λmax =
b

T
, (2)

in which b = 2897.7729 µmK is Wien’s displacement constant.221

Compared to a fire-free pixel, the overall spectral radiance in the longer SWIR222

wavelengths is therefore elevated whenever a pixel contains fire activity.223

Alternatively, hyperspectral remote sensing can make use of features that are caused by224

potassium emission and carbon dioxide absorption (Vodacek et al., 2002; Dennison and225

Roberts, 2009; Amici et al., 2011; Dennison, 2006).226

We tested and, where necessary, adapted three known fire detection indices for227

hyperspectral data, each time proceeding in an identical fashion: Between all test scenes,228

we randomly sampled 250 fire pixels (from the “fire” class) and 250 background pixels229

(from the “vegetation” or “fire scar” class), calculated each index for all sample pixels230

and statistically analyzed the result for its ability to differentiate fire and background.231

We calculated all fire detection indices based on at-sensor spectral radiances that were232

uncorrected for atmospheric effects as a first approximation. During our analysis we233
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also tested combinations of two or all three indices to maximize detection accuracy and234

minimize false detections (errors of commission).235

4.2.1. Potassium (K) emission236

This method uses the potassium (K) emission lines at 766.5 and 769.9 nm (Vodacek et al.,237

2002) characteristic for biomass burning. In Hyperion data, both emission lines fall238

within band 42 with a central wavelength of 772.78 nm. Its spectral radiance would be239

elevated in the presence of fire-stimulated potassium emissions (Cahill et al., 2008), but240

the neighboring band at 780 nm would not be.241

Dennison and Roberts (2009) define a K-emission index as the ratio L770nm/L780nm and use242

it with data from the Airborne Visible / Infrared Imaging Spectrometer (AVIRIS), while243

Amici et al. (2011) examine high spectral resolution as well as simulated and real Hyperion244

data using a metric called the Advanced K-Band Difference (AKBD). In Hyperion data the245

AKBD metric translates to the band difference L770nm − L780nm.246

Values for the K-emission ratio are expected to be <1, and AKBD values <0. This is because247

the 770 nm band is also the location of multiple oxygen absorption lines which overlap248

with the K-emission features (Vodacek et al., 2002) and, averaged over the width of the249

770 nm Hyperion band, lead to a distinctly visible absorption feature (Amici et al., 2011).250

4.2.2. Carbon dioxide continuum-interpolated band ratio (CO2 CIBR)251

The second fire detection method makes use of the CO2 absorption feature at 2010 nm.252

It takes advantage of the principle that radiation emitted by a fire only has to travel253

through the atmosphere once to arrive at a satellite-borne sensor, whereas reflected254

sunlight traverses the atmosphere twice. Emitted radiation at this spectral location255

therefore undergoes less absorption than reflected radiation. Therefore, for fire pixels,256
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the CO2 absorption line should appear less pronounced than for background pixels.257

Mathematically, the depth of the absorption line is captured by defining an index called the258

carbon dioxide continuum-interpolated band ratio (CO2 CIBR) (Dennison, 2006; Dennison259

and Roberts, 2009), used successfully for fire detection with Hyperion and AVIRIS data.260

As the absorption feature is located on an upslope section of the radiance spectrum, the261

two shoulders of the feature are not typically at the same value. This situation is reflected262

via interpolation factors used in the formula provided by Dennison (2006):263

CIBR =
L2010 nm

0.666 L1990 nm + 0.334 L2040 nm

(3)

4.2.3. Hyperspectral fire detection index (HFDI)264

The third approach uses a normalized difference index calculated from the spectral265

radiance values in two suitable SWIR bands, which enables the detection of pixels that266

contain thermal anomalies. (Dennison and Roberts, 2009). Dennison and Roberts (2009)267

found the following HFDI performing the best on AVIRIS data for daytime detection of268

the Simi Fire in California:269

HFDI = L2430 nm − L2060 nm

L2430 nm + L2060 nm

(4)

A threshold for detection is determined at a value that optimally separates fire pixels from270

non-fire pixels; it is typically close to zero, or has a small negative value (Dennison and271

Roberts, 2009).272

The original HFDI cannot be used without modification as the longer wavelength (2430273

nm) exceeds the longest wavelength available in Hyperion’s L1B calibrated spectral274

radiance product. After inspecting the spectra for saturation behavior, we identified275
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ranges of candidate bands in the vicinity of the shorter and longer wavelengths of Eq. (4)276

and constructed amodifiedHFDI from the average of normalized difference values of band277

combinations that best separate fire from non-fire pixels.278

4.3. MODTRAN for atmospheric correction279

Active fire temperature retrieval requires atmospherically corrected sources of emitted280

infrared radiation. We used MODTRAN 5.3 (Berk et al., 2006) to generate transmittance281

profiles for each study scene across the wavelength region between 350 and 2500 nm.282

The MODTRAN input was based on user-specified model atmosphere from radiosonde283

data acquired at noon on the day of the respective overpass at Fairbanks International284

Airport (PAFA station) distributed by the University of Wyoming Atmospheric Sciences285

Department (http://weather.uwyo.edu/upperair/sounding.html). Due to the presence286

of active fire, and therefore smoke, in the study scene, we selected the predefined287

option “rural extinction, visibility 5 km”. Additional MODTRAN input parameters are288

summarized in Table 2.289

The transmittance profiles were then used to generate a set of simulated atmospherically290

corrected blackbody radiance spectra to serve as temperature endmembers in a linear291

model.292

4.4. Temperature retrieval293

The spectrummeasured at the pixel that is the site of active fire can be modeled as a linear294

mixture of emitted and reflected components (Dennison et al., 2006). We represented295

the measured at-sensor spectral radiance Lλ,m as the sum of signals that originate from296

a number n of fractional areas each of which burns at a constant temperature Ti, plus297

uniform background components:298
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Table 2: Configuration used with MODTRAN 5.3

Parameter Comment

MODEL = 7 User-specified model atmosphere from radiosonde data
(PAFA station, noon)

ITYPE = 2 Vertical or slant path between two altitudes

IHAZE = 2 RURAL extinction, default VIS = 5 km

IEMSCT = 0 Spectral transmittance mode only

CO2MX = 390.0 CO2 mixing ratio

H1 / GNDALT Determined from altitude of center of subset

H2 Determined from highest level available in radiosonde
profile

ANGLE Determined from sensor look angle

V1 = 350 Initial wavelength (nm)

V2 = 2500 Final wavelength (nm)

DV = 1 Wavelength step (nm)

Lλ,m =

n∑
i=1

pi,fireLλ(Ti) +

m∑
j=1

pj,backgroundLj,reflected (5)

Lλ(Ti) is the atmospherically corrected spectral radiance of the temperature component299

Ti, Lj,reflected is the jth background component, and the pi and pj are the corresponding300

fractional pixel areas, which have to add up to 1. Atmospheric scattering was taken into301

account via the IHAZE parameter in the MODTRAN transmittance calculation (Section302

4.3, Table 2). Otherwise, path radiance was neglected (following e.g. Dennison and303

Matheson, 2011). This approach is similar to the two-component sub-pixel temperature304

and fractional area retrieval method developed by Dozier (1981) using mid- and thermal305

infrared data; the uncertainties in retrieved fire temperature and fractional area increase306

substantially when the fractional fire area becomes very small (Giglio and Kendall, 2001).307
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In order to select suitable background components Lj,reflected we considered that the308

reflected contribution dominates in the VNIR spectral range. To reduce the influence309

of the reflected radiation components and scattering by smoke at shorter wavelengths we310

limited the analysis to all wavelengths λ >1400 nm (100 calibrated Hyperion channels).311

In the vicinity of active fires, we are likely to find two physically distinct background312

landcover types: vegetation and fire scar. After inspecting SWIR spectra from the313

“vegetation” and “fire scar” classes, we found them to be quite distinct, at least in the314

shorter wavelength part of the SWIR range (between 1400 and 1800 nm) and therefore315

opted for two separate background contributions (m = 2). The pj,background become the316

fractional areas pveg and pscar.317

For the emitted components Lλ(Ti) we used Planck blackbody spectra which we318

atmospherically corrected using the MODTRAN 5.3 transmittance profiles calculated for319

each acquisition date. For each study case, a catalog of these temperature endmembers320

was generated covering the temperature range between 40 K and 1200 K in steps of 10 K.321

To determine the parameters Ti and pi we used least-squares curve fitting for the set of322

all pixels in the “fire” class. The best-fitting n temperature endmembers are retained as323

modeled temperature components. Regarding the choice of n, Dennison et al. (2006) used324

a single temperature component, but at a much higher spatial resolution (AVIRIS GSD325

of 5 m instead of 30 m for Hyperion) which is more likely to be adequately described326

by a single fire temperature. A different example comes from an application to lava327

temperatures using Hyperion data (Wright et al., 2010; Abrams et al., 2013), where an328

n of 2 or 3 yielded a satisfactory fit. We started with a single temperature component329

followed by an increase of n to 2, checking whether the RMS error improved.330

In our model, m = 2 and n = 2 means fitting five parameters to 100 Hyperion SWIR331

data points (T1, p1,fire, T2, p2,fire and pveg, with pscar determined via the constraint that332
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the sum of all fractional areas must be 1). Even though it would appear that there is no333

risk of overfitting, there are strong arguments against further increasing n: The spectral334

radiance values of a Hyperion SWIR spectrum are not arbitrary, but correlated with each335

other. They are also affected by sensor noise, and we made a number of simplifying336

assumptions (that the fire targets are blackbody radiators, that path radiance is minimal337

and can be neglected, that the composition of the background is uniform). For the area338

footprint (900 m2) of a Hyperion pixel, model output with two temperature components339

would appear to reasonably describe a physical reality, but this becomes less true when340

the number of temperature endmembers increases.341

5. Results342

5.1. Fire detection and comparative analysis343

Fire, fire scar, vegetation and smoke/cloud areas (Figure 4) were delineated for each study344

area using a Random Forest classifier. We set the number of decision tree estimators in345

the classifier to 100 and verified the stability of the classification by repeat runs, observing346

that pixel counts in all classes remained roughly equal. Furthermore, a 10-fold cross-347

validation, each time with a different 60/40 split of the labeled input data into training348

and test sets, yielded both accuracy and F1 (macro) scores (that is the harmonic average349

of true positive rate and positive predictive value) of 0.97 ± 0.11. This is a good result350

and confirms that selecting 20 labeled training samples in each class was sufficient. The351

final classifications have 1019 pixels in the “fire” class for the Crazy fire test site, 662 for352

the Boundary fire scene, and 197 for the Wood River scene. Across the classified scenes,353

we randomly sampled 500 pixels for use as a labeled test set to evaluate fire detection354

indices (200 each from the Crazy and Boundary fire scenes and 100 from the Wood River355

scene, given the smaller number of fire pixels in this scene). Half the samples were drawn356
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Figure 4: Crazy fire (top) and Boundary fire (bottom). Left: Overview plot from the Moderate-
resolution Imaging Spectroradiometer (MODIS) on the Terra satellite, acquired the same day as the
Hyperion scene. RGB composite using bands 7-2-1. The extents of the Hyperion scenes are marked
by yellow rectangles (same locations as in Fig. 1). Middle: Hyperion RGB composite using bands
150-50-23 in RGB (1648.9 nm, 854.18 nm, and 579.45 nm), with manual samples marked. (Pixel color
designations: yellow - fire, brown - firescar, green - vegetation, turquoise - smoke or cloud.) Right:
classification output (same colors as in the middle). The irregular shape of the classified subsets (right)
reflects the final subset masks, which delineate the fire-adjacent zones using a simple SWIR radiance
threshold.

from the “fire” class and half from “fire scar” or “vegetation”, which together represent357

the “background” class for the purpose of fire detection.358

Spectra from the “fire” class that are free from anomalies or saturation effects can be359

distinguished from background pixels by observing the spectral radiance values in the360

SWIR range: Unlike in pure background pixels, whose spectrum would continue to fall361

off, a contribution from emitted SWIR radiation is apparent (Figure 5 a). At higher fire362

intensities the longer-wavelength SWIR part of the spectra saturates, reaching spectral363

radiances close to the theoretical maximum of 409.6 W/(m2 µmsr) (Figure 5 b) However,364

we observe that not all saturation effects manifest as a range of radiance values pinned365
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Figure 5: Examples of fire pixel radiance spectra. a) and b) represent a selection of fire pixel spectra
(taken from the Crazy fire study area at the indicated pixel locations). c) and d) show the theoretical
absorption or emission feature location and relevant bands used for fire detection with the the CO2

CIBR and K-emission methods, respectively.

to the theoretical maximum: in some pixels, and even at radiance levels below those of366

the most intense fires, individual bands exhibit spikes (which may or may not extend all367

the way to the saturation maximum) even when neighboring bands do not. This may be368
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due to potential differences in the lag time between saturation and becoming operational369

again for individual Hyperion detector elements.370

The CO2 absorption feature used for calculating the CO2 CIBR index is markedly present371

at approximately the expected location (Figure 5 c). After data inspection, we used bands372

183 at 1981.86 nm and 188 at 2032.35 nm for the shoulders of the absorption line, and band373

185 at 2002.06 nm, where the minimum of the absorption feature was consistently located,374

for its center. In contrast, no K-emission feature in band 42 is discernible with the naked375

eye (Figure 5 d).376

We then evaluated all three indices over the labeled test set of 500 sample pixels (Figure 6).377

For the HFDI, band 224, with a central wavelength of 2395.5 nm, is the longest-wavelength378

calibrated band, and we found the top of the Hyperion band range, beyond approximately379

band 220, to be extremely noisy. As for the shorter wavelength used to construct the380

published HFDI (Dennison and Roberts, 2009), 2060 nm is closest to Hyperion’s band381

191. To consider a range of candidate bands for a Hyperion-based HFDI we selected all382

combinations of shorter-wavelength and longer-wavelength bands that can be generated383

from any of the bands 190, 191, 192, 193, 194, 195, and 196 as the shorter-wavelength384

band and any of the bands 217, 218 and 219 as the longer-wavelength band. We thereby385

avoided the bands in themiddle of the spectral radiance “plateau”, which are often affected386

by anomalies and saturation effects (Figure 5).387

It was apparent that for an HFDI calculated with band 190 as the shorter-wavelength388

band, both the variance of HFDI values and the separation of fire and background HFDI389

values was worst, likely due to sensor noise in band 190. To further quantify the available390

choices for a Hyperion-specific HFDI, we modeled the distribution of HFDI values in both391

the fire and background class for each combination as normal distributions and calculated392

their overlap (which represents the sum of all errors of commission and of omission), the393
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Figure 6: Comparison (box plots) of the distributions of average HFDI, carbon dioxide CIBR and K-
emission band difference index across fire and background pixels for each fire event. The whiskers
extend to the highest and lowest datum still within 1.5 times the inter-quartile range. Data points
beyond this range are plotted as outliers.

optimal cut-off value to separate fire from background, as well as the positive predictive394

value and the F1 score (Table 3), which takes into account both errors of commission and395

of omission.396

Several potentially “best” combinations obtain very similar results in positive predictive397

value and F1 score and there is no clear cut-off other than removing band 190 from398

consideration. We therefore discarded the three combinations of band 190 with bands399

217 to 219 and averaged the remaining 18 HFDI combinations. Averaging the indices400

calculated from multiple bands has the advantage of reducing the influence on single-401

band noise on the resulting mean index value. For this “average HFDI” (Figure 6), we402

found an optimal cut-off value to separate fire from background of -0.13, based on our403

data.404

The CO2 CIBR index is also capable of separating fire from background (Figure 6), albeit405

with notable differences between the three study areas (Figures 6 and 7). This index also406

produces some extreme outliers. Between all 500 samples, the optimal CO2 CIBR value407

to separate fire from background was determined to be 0.21. As for the K-emission index,408

we found no statistical ability to distinguish fire from background (Figure 6). For two of409
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the test scenes, the median index value is even (slightly) greater for the background pixels410

than for the fire pixels.411

Table 3: HFDI band combinations evaluated for 500 labeled sample pixels (fire and background). The
cut-off column refers to the optimal HFDI value to separate fire from non-fire. The overlap column
represents the modeled overlap between the fire and non-fire distribution. The true detection rate is
the true positive rate calculated for fire detection. PPV represents the positive predictive value for fire
detection.

Bands Central λ (nm) Cut-off Overlap True detection rate PPV F1 score

196, 217 2113.04, 2324.91 -0.172 0.138 0.868 0.879 0.873

196, 218 2113.04, 2335.01 -0.192 0.146 0.864 0.882 0.873

195, 218 2102.94, 2335.01 -0.192 0.143 0.86 0.885 0.872

195, 217 2102.94, 2324.91 -0.152 0.149 0.84 0.901 0.87

196, 216 2113.04, 2314.81 -0.172 0.134 0.84 0.897 0.868

195, 216 2102.94, 2314.81 -0.172 0.144 0.836 0.889 0.862

194, 218 2092.84, 2335.01 -0.172 0.169 0.836 0.878 0.857

193, 218 2082.75, 2335.01 -0.152 0.177 0.84 0.868 0.854

193, 217 2082.75, 2324.91 -0.111 0.185 0.812 0.894 0.851

194, 217 2092.84, 2324.91 -0.131 0.161 0.816 0.887 0.85

194, 216 2092.84, 2314.81 -0.152 0.149 0.824 0.873 0.848

192, 216 2072.65, 2314.81 -0.051 0.175 0.812 0.886 0.848

193, 216 2082.75, 2314.81 -0.131 0.172 0.828 0.855 0.841

192, 218 2072.65, 2335.01 -0.071 0.18 0.82 0.861 0.84

192, 217 2072.65, 2324.91 -0.051 0.184 0.828 0.848 0.838

191, 218 2062.55, 2335.01 0.03 0.215 0.82 0.82 0.82

191, 216 2062.55, 2314.81 0.051 0.21 0.804 0.824 0.814

191, 217 2062.55, 2324.91 0.071 0.222 0.792 0.822 0.807

190, 218 2052.45, 2335.01 0.071 0.313 0.792 0.692 0.739

190, 216 2052.45, 2314.81 0.111 0.318 0.728 0.728 0.728

190, 217 2052.45, 2324.91 0.111 0.334 0.764 0.687 0.723
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We tested whether fire detection could be improved by retaining all 18 HFDI combinations412

separately and adding the CO2 CIBR as well, effectively calculating a data vector of413

length 19 for each pixel. To evaluate the potential improvement over the averaged HFDI,414

we constructed a new Random Forest classifier using the 500 labeled test pixels. After415

executing a 10-fold cross-validation (60/40 split of the labeled samples in training and test416

sets) we determined a classification accuracy of 0.85 (std: 0.02) for the mean HFDI and417

0.87 (std: 0.02) for the combined multi-HFDI-plus-CIBR classifier.418

5.2. Temperature retrieval419

The need for two separate background components was confirmed as we found that SWIR420

spectra from the “fire scar” and “vegetation” classes were quite distinct (Figure 8a). The421

distinction between the two classes was most pronounced in the shorter-wavelength422

SWIR region between 1400 and 1800 nm, while they vary much less in the longer-423

wavelength SWIR region above 1900 nm. For each study case, we used the sample-424

averages of the “fire scar” and “vegetation” spectra as reflective endmembers.425

With a single emitted component (corresponding to three independently fitted parameters426

p, T, and pveg), we found that the fit of fire spectra was often unsatisfactory. We therefore427

added a second temperature component (five independently fitted parameters, p1, T1, p2,428

T2, and pveg), which greatly improved the result. There was no justification for adding a429

third temperature component.430
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Figure 7: Values of average HFDI and CO2 CIBR for the Crazy and Boundary fire study areas. The
stripes stem from uncorrelated striping noise typical for pushbroom sensors (Rogass et al., 2014). For
the Boundary fire, the sub-region, marked by a rectangle, is enlarged (bottom row). For the enlarged
region, we added the K-emission (AKBD) metric (extreme outlying values only). The colors correspond
to the supervised classification, identical to Figure 4: fire (yellow), fire scar (brown) and vegetation
(green). The gray (including white) values are the fire detection metrics on the same color ramp as the
zoomed-out plots.
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Figure 8: Example spectra for T-retrieval. a) sample spectra from vegetation and fire scar classes
(green and brown), and average spectra (green, red-orange, black). b) to f) Examples of temperature
and fractional area fit to individual Hyperion radiance spectra. b) and c) illustrate unsatisfactory fit in
pixels with large reflective radiance contribution in the lower SWIR region, or due to data anomalies.
d) to f) illustrate very good fit. In d) and e), even small fractional active fire areas are clearly distinct
from pure vegetation spectra (green curve).

26



Figure 9: Burning areas of the Crazy and Boundary study sites: Temperature of the largest active fire
fraction T1 (left) and total fractional fire area p1 + p2 (right). The fire temperature map shows the
most intense flaming combustion in bright colors and the pixels in which the largest fire contribution
is from smoldering or other low-intensity fire in darker colors. Themost intense fire front is represented
by high fire temperatures on the left and high fractional areas (dark pixels) on the right. In contrast,
low fire temperatures (dark tones) on the left combined with large fractional areas (dark tones) on the
right would correspond a pixel that is for a large part affected by low-intensity combustion.
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Typically, the fit to the measured spectra was excellent, such as in cases of pixels that are431

dominated by amix of vegetation and fire scar plus either a very small fraction of relatively432

high-temperature fire (Figure 8d) or a slightly larger fraction of low-temperature fire433

(Figure 8e). Both these cases yield spectra that are essentially identical to pure background434

spectra in the shorter-wavelength part of the SWIR range, but deviate strongly in the435

longer-wavelength part. Some pixels with saturation effects are also reasonably well fitted436

(Figure 8f). In contrast, Figures 8b) and c) illustrate cases of relatively poor curve fit.437

The retrieved temperature T1 that corresponds to the larger active fire fraction and the438

total fractional fire area (p1 + p2) are plotted in Figure 9 for the Crazy and Boundary fire439

scenes. (We labeled the indices so that p1 > p2.)440

6. Discussion441

The performance of the three fire detection methods varies. Using K-emission, we were442

unable to tell fire and background pixels apart. Amici et al. (2011), on the other hand,443

approach themethod from a different angle and only look at pixels for whichAKBD values444

are exceptionally high, which indeed, in one of the two sample scenes they examine (the445

2007 Witch fire in California), enables them to detect a fire signal using Hyperion data.446

Following their approach, we also found an area within the the 2004 Boundary fire scene447

for which outliers in the AKBD metric correspond to locations of intense combustion448

(Figure 7, bottom row). However, the same does not apply to the 2004 Crazy or the 2009449

Wood River fire, even though the Crazy fire scene contains the most intense fire across450

our three study sites.451

Thus, even though we were able to reproduce the detection of a weak K-emission signal452

in one of three study cases, we cannot consider the K-emission method useful for fire453
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detection in the Alaska boreal forest. It should be pointed out that the 2007Witch fire was454

a very high intensity event that burned in chaparral shrubland near Escondido, California.455

This eco-region has a fire regime very different from that of a boreal forest fire in a456

black spruce dominated ecosystem. In the Alaska case, a large percentage of the biomass457

consumption comes from the sub-surface layers of organic matter (Randerson et al., 2006)458

rather than from quick-burning surface fuels. Furthermore, the absence of a K-emission459

signal even in the highest-intensity fire pixels of the Crazy fire may be related to the460

presence of large amounts of smoke in the scene. The active fire pixels of the 2009 Wood461

River fire were generally of low intensity, and a signal was not expected in this case. The462

main factors limiting the usefulness of K-emission with Hyperion are the much coarser463

spatial resolution of the satellite-borne sensor, which leads to a lowered sensitivity, and464

the strong sensor noise.465

The carbon dioxide CIBR, which is based on an absorption feature, shows a clear statistical466

difference between fire and background pixels. Fire areas are discernible in a map of CO2467

CIBR values (Figure 7), but on a background of substantial noise. The Crazy fire test468

scene is particularly hard to map using the CO2 CIBR, and the plot suggests that areas469

containing smoke or clouds, and to a lesser degree burn scars, introduce a large number470

of false detections. The optimal CO2 CIBR threshold to distinguish fire from background471

appears to vary from scene to scene. Zooming into known fire areas, we see that high472

CIBR values follow the outline of the fire front (Figure 7, bottom row). The CO2 CIBR473

quantifies the proportion of emitted radiation in the measured spectral radiance value at474

a specific wavelength. To make it more useful standing on its own the image would have475

to be de-striped and cloud-masked, which would come at the cost of losing further detail476

in the signal.477

An average of 18 HFDI band combination produces crisp fire maps with HFDI values478
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that appear to correlate with fire intensities. Averaging helps reduce the noise inherent479

in Hyperion data. The Hyperion-specific averaged HFDI provided a reasonably stable480

detection threshold that did not vary greatly between three fire events in the Alaska481

boreal forest. A downside of band-averaging is that it effectively lowers the spectral482

resolution of the imaging spectrometry data, from 10 nm to 60 nm (six shorter-wavelength483

bands) and 30 nm (three longer-wavelength bands). Even a 60 nm bandwidth is still484

relatively small compared to common satellite-borne multispectral sensors (for example485

Landsat 8 OLI SWIR band 7: 187 nm). Essentially, opting for a band-averaged index486

rather a than single-band index reflects a necessary choice to avoid noisy or sub-optimally487

located Hyperion bands. In general, a normalized-difference based index is likely to be488

less susceptible to spectral resolution than an index that relies on an individual spectral489

feature. Opportunities for better fire detection using the HFDI-type normalized detection490

indices will require improved performance of future sensors in the 2̃400 - 2500 nm range,491

beyond the end of Hyperion’s range of calibrated channels, and reduced noise across the492

SWIR range, rather than a finer spectral resolution.493

Dennison and Roberts (2009) indicate that an HFDI-type index does not increase494

monotonically with fire intensity for very hot fires (T >1400 K), for which the emitted495

radiance at the shorter wavelength (approximately 2060 nm) will begin to exceed the496

radiance at the longer wavelength (approximately 2400 nm). For Hyperion, however,497

we do not find non-saturated pixels with usable data in this temperature range and498

can therefore assume that for our data, higher HFDI values correspond to higher fire499

intensities. The HFDI values found in the Crazy and Boundary fire data appear to be500

consistent with this principle (Figure 7): The HFDI reveals rich fire intensity patterns,501

which are an improvement over the result we obtained from supervised classification. A502

mixed approach that relies on all 18 HFDI band combinations plus theCO2 CIBR was able503
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to achieve a small improvement in classification accuracy, but at the cost of losing a single504

meaningful scalar index.505

The linear spectral mixture analysis yields an overall excellent result for retrieving active506

fire temperatures based on two constant background components (vegetation and fire507

scar) and two active fire components whose temperatures were allowed to vary freely508

from pixel to pixel. Measured spectra with very small fractional areas (< 1%, that is, 5 -509

9 m2) of high-temperature active fire on a mixed vegetation and fire scar background were510

fitted extremely well (Figure 8d). The same is true for pixels that contain a somewhat511

larger fractional area of low-temperature fire (Figure 8e). Even pixels with 20 % to 25 %512

(approximately 200 m2) of high-intensity active fire (Figure 8e) were modeled quite well513

even though the Hyperion sensor saturates in the SWIR region at such signal intensities.514

Typical temperatures for high-temperature fire components ranged from 800 K to 900 K.515

This value, which is not very high for wildfire, is limited by the saturation behavior of516

the Hyperion sensor: Beyond 900 K, the spectral radiance contribution in the longer-517

wavelength part of the SWIR region (>1900 nm) saturates the sensor; a meaningful518

temperature retrieval becomes impossible. The low temperatures of fire components519

were typically at values of 500 K to 600 K, which falls within the region of smoldering520

combustion of organic forest soil matter (Rein et al., 2008). The model therefore provides521

a pixel-by-pixel characterization of fire behavior properties. We were able to map hotter522

and cooler fire areas, and regions inwhich active fire occupies a larger or smaller fractional523

pixel area (Figure 9).524

There are two limitations for temperature retrieval in our study: First, pixels with severe525

SWIR data anomalies such as drop-outs and some saturation behavior cannot be fitted526

well (Figure 8b). Second, some fire pixels are dominated by a reflected radiance component527

that exceeds the typical vegetation-type background at the shorter-wavelength end (1400 -528
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1800 nm). These pixels contain a source of reflected solar radiation thatwas not adequately529

captured by our choice of an averaged vegetation background spectrum (Figure 8c). Due530

to the small size of the study area (and the narrowness of the Hyperion swath) we531

considered it sufficient to use per-scene constant vegetation and fire scar endmembers; the532

unsatisfactory fit of some pixels highlights the limitation of this assumption. We could533

overcome it by applying a contextual selection and averaging mechanism to determine534

pixel-by-pixel background contributions. Such background contributions should continue535

to further distinguish between fire scar and vegetation and would provide improved536

information on the fractional areas of a pixel that are unburned versus already-burned.537

7. Conclusions, recommendations, and future work538

We have demonstrated the usefulness of a Hyperion-type hyperspectral sensor to detect,539

map, and characterize active fire in Alaska’s boreal forest as well as the land cover540

changes introduced by fire (fire scar and unburned vegetation). We detected both high-541

intensity flaming fire and low-temperature combustion likely associated with smoldering542

fire. Sensors like Hyperion have great potential to further identify classes of fuel type543

(Dennison et al., 2006) and condition, as well as the properties of both fresh and older544

burn scars. One area for future research includes fire severity, which, in the Alaska boreal545

forest, is associated with the degree to which the sub- surface layers of organic matter are546

consumed (Lentile et al., 2006). Such work requires a field component.547

Future instruments are already being designed with an emphasis on enhanced SNR, as548

is the case for HyspIRI at 500:1 (2200 nm) (Lee et al., 2015), PRISMA at >200:1 (VNIR549

and SWIR) (Labate et al., 2009), and EnMAP at >150:1 (SWIR) (Kaufmann et al., 2006),550

compared to Hyperion’s SNR of 38:1 at 2125 nm (Pearlman et al., 2003). Areas of551

active combustion represent a larger percentage of total pixel area as spatial resolution is552
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increased, so finer spatial resolutions could make the detection of weak spectral features,553

such as the K-emission line, more likely. Such a requirement, though, is in conflict with554

a shorter repeat interval, which would be highly desirable for monitoring relatively rapid555

landscape processes such as a change in pre-fire fuel conditions or fire effects. Similarly,556

improved saturation behavior needs to be considered as a trade-off with sensor sensitivity557

(Realmuto et al., 2015). Design goals such as a short recovery lag before saturated sensor558

elements are operational again or a well-documented signature of sensor saturation are559

likely to be preferable to a high saturation threshold on a sensor that is incapable of560

picking up weak heat signals.561

We hope that new and enhanced satellite-borne imaging spectrometers will become562

available in order to expand our ability to understand active wildfire in its biophysical563

context. As our work showed, spectral bands from the atmospheric windows of the564

SWIR portion of the electromagnetic spectrum (combining both the 1500-1800 nm and565

the 2000-2500 nm range) are suitable to detect active fire, characterize it (T-retrieval),566

and classify the pre- and post-fire land cover. Our research demonstrated a repeatable567

process to define a modified HFDI using specific ranges of spectral bands, which, either568

alone or in combination with the CIBR, resulted in high-quality detection of active569

fire. Future instruments would enhance the investigation of climate and environmental570

change, the carbon cycle, and, ultimately, might even open new avenues for operational571

fire monitoring572
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